metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Harry Adams, Scott Clunas and David E. Fenton*

Department of Chemistry, Dainton Building, University of Sheffield, Sheffield S7 3HF, England

Correspondence e-mail: d.fenton@sheffield.ac.uk

Key indicators

Single-crystal X-ray study T = 150 KMean $\sigma(\text{C-C}) = 0.007 \text{ Å}$ R factor = 0.041 wR factor = 0.087 Data-to-parameter ratio = 16.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

A dinuclear nickel(II) complex of the ligand 2,6-bis[2-(dimethylamino)ethyliminomethyl]-4-methylphenol

In the title complex, triaqua{ μ -2,6-bis[2-(dimethylamino)ethyliminomethyl]-4-methylphenolato}- μ -bromo-bromodinickel(II) bromide monohydrate acetonitrile disolvate, [Ni₂Br₂(C₁₇H₂₇N₄O)(H₂O)₃]Br·H₂O·2C₂H₃N, the Ni^{II} atoms are octahedrally coordinated and the donor groups are different (N₂O₃Br and N₂O₂Br₂), with an intermetallic separation of 3.2346 (9) Å.

Comment

Hydrolysis of the imine function has been observed in the reaction of asymmetric Schiff base compartmental ligands with Ni^{II} salts (Adams *et al.*, 2000; Adams, Clunas & Fenton, 2002). The reaction of the symmetric compartmental ligand 2,6-bis[2-(dimethylamino)ethyliminomethyl]-4-methylphenol with nickel(II) bromide gave the title complex, $[Ni_2Br_2L-(H_2O)_3]Br\cdotH_2O\cdot2CH_3CN$, (I), in which the integrity of the imine functions is retained. The Ni atoms are octahedrally coordinated and the donor groups are different (N₂O₃Br and N₂O₂Br₂; Satcher *et al.*, 1995). The intermetallic separation of 3.2346 (9) Å is comparable with those found in related Ni^{II} complexes of asymmetric Schiff base compartmental ligands (Adams, Clunas, Fenton & Spey, 2002). The Ni atoms are doubly bridged, by the phenolate O atom of the ligand and by a bromide anion.

Experimental

The complex was prepared from the ligand and nickel(II) bromide by the method of Sakiyama *et al.* (2000). The reaction mixture was allowed to evaporate in air, yielding crystals suitable for crystallographic study.

Crystal data

$[Ni_2Br_2(C_{17}H_{27}N_4O)(H_2O)_3]Br$	$D_x = 1.739 \text{ Mg m}^{-3}$
$H_2O \cdot 2C_2H_3N$	Mo $K\alpha$ radiation
$M_r = 814.75$	Cell parameters from 4188
Monoclinic, $P2_1/n$	reflections
a = 10.5662 (13) Å	$\theta = 4.5 - 55.9^{\circ}$
b = 11.8911 (15) Å	$\mu = 5.1 \text{ mm}^{-1}$
c = 25.158 (3) Å	T = 150 (2) K
$\beta = 100.039 \ (2)^{\circ}$	Block, green
$V = 3112.5 (7) \text{ Å}^3$	$0.25 \times 0.18 \times 0.10 \text{ mm}$
Z = 4	

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved Received 9 February 2004 Accepted 20 February 2004 Online 28 February 2004

Figure 1

View of the $[Ni_2BrL(H_2O)_3]^+$ cation, with 50% probability displacement ellipsoids. H atoms have been omitted.

Data collection

Bruker SMART 1000 CCD area-	5468 independent reflections
detector diffractometer	3844 reflections with $I > 2\sigma(I)$
ω scans	$R_{\rm int} = 0.102$
Absorption correction: multi-scan	$\theta_{\rm max} = 25^{\circ}$
(SADABS; Bruker, 1997)	$h = -12 \rightarrow 12$
$T_{\min} = 0.344, \ T_{\max} = 0.600$	$k = -13 \rightarrow 14$
14 837 measured reflections	$l = -14 \rightarrow 29$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.088$ S = 0.875468 reflections 336 parameters H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0396P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.004$ $\Delta\rho_{max} = 0.79 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.68 \text{ e} \text{ Å}^{-3}$

Table 1		
Hydrogen-bonding geometry ((Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O1W-H1WA\cdots Br2^{i}$	0.85	2.44	3.256 (3)	162
$O1W-H1WB\cdots Br1^{i}$	0.85	2.55	3.398 (3)	173
$O2W - H2WA \cdots O3W$	0.85	2.07	2.868 (4)	157
$O2W - H2WB \cdots O1W$	0.85	1.86	2.707 (4)	172
O3W−H3WA···N5 ⁱⁱ	0.85	2.03	2.880 (5)	180
O3W−H3WB···Br2 ⁱⁱ	0.85	2.42	3.270 (3)	180
O4W−H4WA···Br2 ⁱⁱⁱ	0.85	2.41	3.260 (3)	180
$O4W-H4WB\cdots Br1$	0.85	2.42	3.266 (3)	180

Symmetry codes: (i) $\frac{3}{2} - x$, $y - \frac{1}{2}, \frac{1}{2} - z$; (ii) 1 + x, y, z; (iii) $\frac{3}{2} - x, \frac{1}{2} + y, \frac{1}{2} - z$.

H atoms for the solvent water molecules were calculated by difference Fourier. All other H atoms were placed geometrically and refined with a riding model (including torsional freedom for methyl groups) and with $U_{\rm iso}$ constrained to be 1.2 (1.5 for methyl groups) times $U_{\rm eq}$ of the carrier atom.

Data collection: *SMART* (Bruker, 1997); cell refinement: *SMART* (Bruker, 1997); data reduction: *SAINT* and *SHELXTL* (Bruker, 1997); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

We thank the EPSRC for support to SC and for funds towards the purchase of the diffractometer

References

Adams, H., Fenton, D. E., Haque, S. R., Heath, S. L., Ohba, M., Okawa, H. & Spey, S. E. (2000). J. Chem. Soc. Dalton Trans. pp. 1849–1856.

- Adams, H., Clunas, S. & Fenton, D. E. (2002). Inorg. Chem. Commun. pp. 1063–1065.
- Adams, H., Clunas, S., Fenton, D. E. & Spey, S. E. (2002). J. Chem. Soc. Dalton Trans. pp. 441–448.
- Bruker (1997). SMART, SAINT, SADABS and SHELXTL (Version 5.1). Bruker AXS Inc., Madison, Wisconsin, USA.
- Sakiyama, H., Tamaki, H., Kodera, M., Matsumoto, N. & Okawa, H. (2000). J. Chem. Soc. Dalton Trans. pp. 591–595.
- Satcher, J. H. Jr, Droege, M. W., Weakley, T. J. R. & Taylor, R. T. (1995). Inorg. Chem. 34, 3317–3328.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.